z-logo
open-access-imgOpen Access
Computational Approaches to Design and Test Plant Synthetic Metabolic Pathways
Author(s) -
Anika Küken,
Zoran Nikoloski
Publication year - 2019
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.18.01273
Subject(s) - synthetic biology , biochemical engineering , plant metabolism , context (archaeology) , in silico , metabolic pathway , systems biology , multicellular organism , metabolic network , computational biology , metabolic engineering , compartmentalization (fire protection) , computer science , plant biology , microbiology and biotechnology , biology , metabolism , biochemistry , engineering , botany , paleontology , rna , gene , enzyme
Successfully designed and implemented plant-specific synthetic metabolic pathways hold promise to increase crop yield and nutritional value. Advances in synthetic biology have already demonstrated the capacity to design artificial biological pathways whose behavior can be predicted and controlled in microbial systems. However, the transfer of these advances to model plants and crops faces the lack of characterization of plant cellular pathways and increased complexity due to compartmentalization and multicellularity. Modern computational developments provide the means to test the feasibility of plant synthetic metabolic pathways despite gaps in the accumulated knowledge of plant metabolism. Here, we provide a succinct systematic review of optimization-based and retrobiosynthesis approaches that can be used to design and in silico test synthetic metabolic pathways in large-scale plant context-specific metabolic models. In addition, by surveying the existing case studies, we highlight the challenges that these approaches face when applied to plants. Emphasis is placed on understanding the effect that metabolic designs can have on native metabolism, particularly with respect to metabolite concentrations and thermodynamics of biochemical reactions. In addition, we discuss the computational developments that may help to transform the identified challenges into opportunities for plant synthetic biology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom