z-logo
open-access-imgOpen Access
Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling
Author(s) -
Junsik Choi,
Susan R. Strickler,
Eric J. Richards
Publication year - 2019
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.18.01020
Subject(s) - biology , ectopic expression , arabidopsis , microbiology and biotechnology , arabidopsis thaliana , programmed cell death , nuclear lamina , salicylic acid , mutant , phenotype , hypersensitive response , nuclear protein , gene , genetics , apoptosis , transcription factor
Defects in the nuclear lamina of animal cell nuclei have dramatic effects on nuclear structure and gene expression as well as diverse physiological manifestations. We report that deficiencies in CROWDED NUCLEI (CRWN), which are candidate nuclear lamina proteins in Arabidopsis ( Arabidopsis thaliana ), trigger widespread changes in transcript levels and whole-plant phenotypes, including dwarfing and spontaneous cell death lesions. These phenotypes are caused in part by ectopic induction of plant defense responses via the salicylic acid pathway. Loss of CRWN proteins induces the expression of the salicylic acid biosynthetic gene ISOCHORISMATE SYNTHASE1 , which leads to spontaneous defense responses in crwn1 crwn2 and crwn1 crwn4 mutants, which are deficient in two of the four CRWN paralogs. The symptoms of ectopic defense response, including pathogenesis marker gene expression and cell death, increase in older crwn double mutants. These age-dependent effects are postulated to reflect an increase in nuclear dysfunction or damage over time, a phenomenon reminiscent of aging effects seen in animal nuclei and in some human laminopathy patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom