z-logo
open-access-imgOpen Access
NLR Mutations Suppressing Immune Hybrid Incompatibility and Their Effects on Disease Resistance
Author(s) -
Kostadin E. Atanasov,
Changxin Liu,
Alexander Erban,
Joachim Kopka,
Jane E. Parker,
Rubén Alcázar
Publication year - 2018
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.18.00462
Subject(s) - biology , genetics , locus (genetics) , epistasis , arabidopsis , allele , gene , genetic architecture , quantitative trait locus , mutant
Genetic divergence between populations can lead to reproductive isolation. Hybrid incompatibilities (HI) represent intermediate points along a continuum toward speciation. In plants, genetic variation in disease resistance ( R ) genes underlies several cases of HI. The progeny of a cross between Arabidopsis ( Arabidopsis thaliana ) accessions Landsberg erecta (L er , Poland) and Kashmir2 (Kas2, central Asia) exhibits immune-related HI. This incompatibility is due to a genetic interaction between a cluster of eight TNL (TOLL/INTERLEUKIN1 RECEPTOR-NUCLEOTIDE BINDING-LEU RICH REPEAT ) RPP1 ( RECOGNITION OF PERONOSPORA PARASITICA1) - like genes ( R1 - R8 ) from L er and central Asian alleles of a Strubbelig -family receptor-like kinase ( SRF3 ) from Kas2. In characterizing mutants altered in L er /Kas2 HI, we mapped multiple mutations to the RPP1 -like L er locus. Analysis of these suppressor of Ler/Kas2 incompatibility ( sulki ) mutants reveals complex, additive and epistatic interactions underlying RPP1 - like L er locus activity. The effects of these mutations were measured on basal defense, global gene expression, primary metabolism, and disease resistance to a local Hyaloperonospora arabidopsidis isolate ( Hpa Gw) collected from Gorzów (Gw), where the Landsberg accession originated. Gene expression sectors and metabolic hallmarks identified for HI are both dependent and independent of RPP1 - like L er members. We establish that mutations suppressing immune-related L er /Kas2 HI do not compromise resistance to Hpa Gw. QTL mapping analysis of Hpa Gw resistance point to RPP7 as the causal locus. This work provides insight into the complex genetic architecture of the RPP1 - like L er locus and immune-related HI in Arabidopsis and into the contributions of RPP1 - like genes to HI and defense.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom