PROTEIN PHOSHATASE 2A B’α and β Maintain Centromeric Sister Chromatid Cohesion during Meiosis in Arabidopsis
Author(s) -
Guoliang Yuan,
Behzad Heidari Ahootapeh,
Shinichiro Komaki,
Arp Schnittger,
Cathrine Lillo,
Nico De Storme,
Danny Geelen
Publication year - 2018
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.18.00281
Subject(s) - sister chromatids , establishment of sister chromatid cohesion , meiosis ii , meiosis , biology , homologous chromosome , cohesin , chromatid , genetics , chromosome segregation , centromere , synapsis , microbiology and biotechnology , homologous recombination , arabidopsis , mutant , chromosome , dna , gene
The correct separation of homologous chromosomes during meiosis I, and sister chromatids during meiosis II, relies on the tight control of the cohesion complex. The phosphorylation and subsequent cleavage of the meiotic recombination protein REC8 (REC8-like family protein [SYN1] in Arabidopsis [ Arabidopsis thaliana ]), the α-kleisin subunit of the cohesion ring, along the chromosome arms at meiosis I allows crossovers and separation of homologous chromosomes without chromatid dissociation. REC8 continues to localize and function at the centromeres up to metaphase II and, in yeast and vertebrates, is protected from cleavage by means of protein phosphatase 2A (PP2A)-mediated dephosphorylation. Here, we show that, in plants, centromeric sister chromatid cohesion until meiosis II also requires the activity of a PP2A-type phosphatase complex. The combined absence of the regulatory subunits PP2AB'α and PP2AB'β leads to the premature loss of chromosome cohesion in meiosis I. Male meiocytes of the pp2ab'αβ double mutant display premature depletion of SYN1. The PP2AA1 structural and B'α regulatory subunit localize specifically to centromeres until metaphase II, supporting a role for the PP2A complex in the SYN1-mediated maintenance of centromeric cohesion in plant meiosis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom