z-logo
open-access-imgOpen Access
Histone Deacetylase Is Required for GA-Induced Programmed Cell Death in Maize Aleurone Layers
Author(s) -
Haoli Hou,
Xueke Zheng,
Hao Zhang,
Mengxia Yue,
Yan Hu,
Hong Zhou,
Qing Wang,
Chengshen Xie,
Pu Wang,
Lijia Li
Publication year - 2017
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.17.00953
Subject(s) - aleurone , histone deacetylase , microbiology and biotechnology , programmed cell death , histone , reactive oxygen species , gibberellin , acetylation , biology , hdac1 , histone acetyltransferase , biochemistry , chemistry , apoptosis , enzyme , botany , dna , gene
Recent discoveries have shown that epigenetic regulation is an integral part of phytohormone-mediated processes. The phytohormone gibberellin (GA) triggers a series of events in cereal aleurone cells that lead to programmed cell death (PCD), but the signaling cascade mediating GA-induced PCD in cereal aleurone layers remains largely unknown. Here, we showed that histone deacetylase (HDAC) activity gradually increased relative to histone acetyltransferase (HAT) activity, leading to a global decrease in histone H3 and H4 acetylation levels during PCD of maize ( Zea mays ) embryoless aleurone layers after 3 d of treatment with GA. HDAC inhibition prevented GA-induced PCD in embryoless aleurone cells, whereas HAT inhibition resulted in PCD even in the absence of GA. Hydrogen peroxide concentrations increased in GA- or HAT inhibitor-treated aleurone cells due to reduced levels of reactive oxygen species scavengers. Hydrogen peroxide-treated aleurone cells showed no changes in the activity or expression of HATs and HDACs. We show that it is possible to predict whether epigenetic modification enzymes serve as a regulator of the GA-triggered PCD signaling pathway in maize aleurone layers. Taken together, these findings reveal that HDAC activity is required for GA-induced PCD in maize aleurone layers and regulates PCD via the reactive oxygen species-mediated signal transduction pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom