A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects
Author(s) -
Melissa H. Magerøy,
Sharon Jancsik,
Macaire M. S. Yuen,
Michael B. Fischer,
Stephen G. Withers,
Christian Paetz,
Bernd Schneider,
John Mackay,
Jöerg Bohlmann
Publication year - 2017
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.17.00611
Subject(s) - biology , glycoside , spruce budworm , botany , glycosyltransferase , biochemistry , metabolite , beta glucosidase , glycosylation , shoot , sugar , metabolism , enzyme , pest analysis , tortricidae , enzyme assay
Acetophenones are phenolic compounds involved in the resistance of white spruce ( Picea glauca ) against spruce budworm ( Choristoneura fumiferiana ), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding glycosides, pungenin and picein. These glycosides appear to be inactive against the insect but can be cleaved by a spruce β-glucosidase, PgβGLU-1, which releases the active aglycons. The reverse glycosylation reaction was hypothesized to involve a family 1 UDP-sugar dependent glycosyltransferase (UGT) to facilitate acetophenone accumulation in the plant. Metabolite and transcriptome profiling over a developmental time course of white spruce bud burst and shoot growth revealed two UGTs, PgUGT5 and PgUGT5b, that glycosylate pungenol. Recombinant PgUGT5b enzyme produced mostly pungenin, while PgUGT5 produced mostly isopungenin. Both UGTs also were active in vitro on select flavonoids. However, the context of transcript and metabolite accumulation did not support a biological role in flavonoid metabolism but correlated with the formation of pungenin in growing shoots. Transcript levels of PgUGT5b were higher than those of PgUGT5 in needles across different genotypes of white spruce. These results support a role of PgUGT5b in the biosynthesis of the glycosylated acetophenone pungenin in white spruce.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom