z-logo
open-access-imgOpen Access
Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems
Author(s) -
Rebecca A. Smith,
Mathias Schuetz,
Steven D. Karlen,
David A. Bird,
Naohito Tokunaga,
Yasushi Sato,
Shawn D. Mansfield,
John Ralph,
Lacey Samuels
Publication year - 2017
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.17.00434
Subject(s) - monolignol , arabidopsis , xylem , lignin , secondary cell wall , cell wall , biology , arabidopsis thaliana , parenchyma , botany , microbiology and biotechnology , biochemistry , gene , biosynthesis , mutant
Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis ( Arabidopsis thaliana ) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom