z-logo
open-access-imgOpen Access
Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration
Author(s) -
Christine Scoffoni,
Caetano Albuquerque,
Craig R. Brodersen,
Shatara V. Townes,
Grace P. John,
Megan K. Bartlett,
Thomas N. Buckley,
Andrew J. McElrone,
Lawren Sack
Publication year - 2017
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.16.01643
Subject(s) - xylem , turgor pressure , hydraulic conductivity , water transport , dehydration , biology , botany , horticulture , water flow , environmental science , soil water , ecology , soil science , biochemistry
Leaf hydraulic supply is crucial to maintaining open stomata for CO 2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (K leaf ) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of K leaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified experimentally the hydraulic vulnerability of xylem and outside-xylem pathways and modeled their respective influences on plant water transport. Evidence from all approaches indicated that the decline of K leaf during dehydration arose first and foremost due to the vulnerability of outside-xylem tissues. In vivo x-ray microcomputed tomography of dehydrating leaves of four diverse angiosperm species showed that, at the turgor loss point, only small fractions of leaf vein xylem conduits were embolized, and substantial xylem embolism arose only under severe dehydration. Experiments on an expanded set of eight angiosperm species showed that outside-xylem hydraulic vulnerability explained 75% to 100% of K leaf decline across the range of dehydration from mild water stress to beyond turgor loss point. Spatially explicit modeling of leaf water transport pointed to a role for reduced membrane conductivity consistent with published data for cells and tissues. Plant-scale modeling suggested that outside-xylem hydraulic vulnerability can protect the xylem from tensions that would induce embolism and disruption of water transport under mild to moderate soil and atmospheric droughts. These findings pinpoint outside-xylem tissues as a central locus for the control of leaf and plant water transport during progressive drought.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom