z-logo
open-access-imgOpen Access
Oxidation of P700 in Photosystem I Is Essential for the Growth of Cyanobacteria
Author(s) -
Ginga Shimakawa,
Keiichiro Shaku,
Chikahiro Miyake
Publication year - 2016
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.16.01227
Subject(s) - p700 , photoinhibition , photosystem i , phototroph , cyanobacteria , photosynthesis , photosystem ii , synechocystis , biology , synechococcus , biophysics , botany , carbon fixation , chemistry , biochemistry , photochemistry , bacteria , genetics
The photoinhibition of photosystem I (PSI) is lethal to oxygenic phototrophs. Nevertheless, it is unclear how photodamage occurs or how oxygenic phototrophs prevent it. Here, we provide evidence that keeping P700 (the reaction center chlorophyll in PSI) oxidized protects PSI. Previous studies have suggested that PSI photoinhibition does not occur in the two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942, when photosynthetic CO 2 fixation was suppressed under low CO 2 partial pressure even in mutants deficient in flavodiiron protein (FLV), which mediates alternative electron flow. The lack of FLV in Synechococcus sp. PCC 7002 (S. 7002), however, is linked directly to reduced growth and PSI photodamage under CO 2 -limiting conditions. Unlike Synechocystis sp. PCC 6803 and S. elongatus PCC 7942, S. 7002 reduced P700 during CO 2 -limited illumination in the absence of FLV, resulting in decreases in both PSI and photosynthetic activities. Even at normal air CO 2 concentration, the growth of S. 7002 mutant was retarded relative to that of the wild type. Therefore, P700 oxidation is essential for protecting PSI against photoinhibition. Here, we present various strategies to alleviate PSI photoinhibition in cyanobacteria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom