z-logo
open-access-imgOpen Access
Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm trees
Author(s) -
Frederic Lens,
Catherine PiconCochard,
Chloé E. L. Delmas,
Constant Signarbieux,
Alexandre Buttler,
Hervé Cochard,
Steven Jansen,
Thibaud Chauvin,
Larissa Chacon Dória,
Marcelino J. del Arco Aguilar,
Sylvain Delzon
Publication year - 2016
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.16.00829
Subject(s) - herbaceous plant , xylem , biology , woody plant , botany , poaceae , arid , embolism , agronomy , ecology , medicine , cardiology
The water transport pipeline in herbs is assumed to be more vulnerable to drought than in trees due to the formation of frequent embolisms (gas bubbles), which could be removed by the occurrence of root pressure, especially in grasses. Here, we studied hydraulic failure in herbaceous angiosperms by measuring the pressure inducing 50% loss of hydraulic conductance (P 50 ) in stems of 26 species, mainly European grasses (Poaceae). Our measurements show a large range in P 50 from -0.5 to -7.5 MPa, which overlaps with 94% of the woody angiosperm species in a worldwide, published data set and which strongly correlates with an aridity index. Moreover, the P 50 values obtained were substantially more negative than the midday water potentials for five grass species monitored throughout the entire growing season, suggesting that embolism formation and repair are not routine and mainly occur under water deficits. These results show that both herbs and trees share the ability to withstand very negative water potentials without considerable embolism formation in their xylem conduits during drought stress. In addition, structure-function trade-offs in grass stems reveal that more resistant species are more lignified, which was confirmed for herbaceous and closely related woody species of the daisy group (Asteraceae). Our findings could imply that herbs with more lignified stems will become more abundant in future grasslands under more frequent and severe droughts, potentially resulting in lower forage digestibility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom