z-logo
open-access-imgOpen Access
Differential effects of nitrogen forms on cell wall phosphorus remobilization in rice (Oryza sativa) are mediated by nitric oxide, pectin content and the expression of the phosphate transporter OsPT2
Author(s) -
Chunquan Zhu,
Xiao Fang Zhu,
An Yong Hu,
Chao Wang,
Bin Wang,
Xiao Ying Dong,
Ren Fang Shen
Publication year - 2016
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.16.00176
Subject(s) - oryza sativa , nitric oxide , cell wall , pectin , phosphorus , phosphate , chemistry , sodium nitroprusside , nitrogen , biochemistry , botany , biology , gene , organic chemistry
NH4 (+) is a major source of inorganic nitrogen for rice (Oryza sativa), and NH4 (+) is known to stimulate the uptake of phosphorus (P). However, it is unclear whether NH4 (+) can also stimulate P remobilization when rice is grown under P-deficient conditions. In this study, we use the two rice cultivars 'Nipponbare' and 'Kasalath' that differ in their cell wall P reutilization, to demonstrate that NH4 (+) positively regulates the pectin content and activity of pectin methylesterase in root cell walls under -P conditions, thereby remobilizing more P from the cell wall and increasing soluble P in roots and shoots. Interestingly, our results show that more NO (nitric oxide) was produced in the rice root when NH4 (+) was applied as the sole nitrogen source compared with the NO3 (-) The effect of NO on the reutilization of P from the cell walls was further demonstrated through the application of the NO donor SNP (sodium nitroprusside) and c-PTIO (NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide). What's more, the P-transporter gene OsPT2 is up-regulated under NH4 (+) supplementation and is therefore involved in the stimulated P remobilization. In conclusion, our data provide novel (to our knowledge) insight into the regulatory mechanism by which NH4 (+) stimulates Pi reutilization in cell walls of rice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom