Genome-wide inference of protein interaction network and its application to the study of crosstalk in Arabidopsis abscisic acid signaling
Author(s) -
Fangyuan Zhang,
Shiwei Liu,
Ling Li,
Kaijing Zuo,
Lingxia Zhao,
Lida Zhang
Publication year - 2016
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.16.00057
Subject(s) - arabidopsis , abscisic acid , crosstalk , biology , computational biology , arabidopsis thaliana , protein–protein interaction , genome , gene , genetics , mutant , physics , optics
Protein-protein interactions (PPIs) are essential to almost all cellular processes. To better understand the relationships of proteins in Arabidopsis (Arabidopsis thaliana), we have developed a genome-wide protein interaction network (AraPPINet) that is inferred from both three-dimensional structures and functional evidence and that encompasses 316,747 high-confidence interactions among 12,574 proteins. AraPPINet exhibited high predictive power for discovering protein interactions at a 50% true positive rate and for discriminating positive interactions from similar protein pairs at a 70% true positive rate. Experimental evaluation of a set of predicted PPIs demonstrated the ability of AraPPINet to identify novel protein interactions involved in a specific process at an approximately 100-fold greater accuracy than random protein-protein pairs in a test case of abscisic acid (ABA) signaling. Genetic analysis of an experimentally validated, predicted interaction between ARR1 and PYL1 uncovered cross talk between ABA and cytokinin signaling in the control of root growth. Therefore, we demonstrate the power of AraPPINet (http://netbio.sjtu.edu.cn/arappinet/) as a resource for discovering gene function in converging signaling pathways and complex traits in plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom