Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage
Author(s) -
Alexander V. Ruban
Publication year - 2016
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.15.01935
Subject(s) - photoinhibition , chlorophyll fluorescence , quenching (fluorescence) , non photochemical quenching , biophysics , photoprotection , chemistry , chlorophyll , fluorescence , photosystem ii , photosynthesis , botany , biology , biochemistry , physics , optics
We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective "power" of NPQ and the important findings obtained through this technology.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom