z-logo
open-access-imgOpen Access
The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice
Author(s) -
Jianping Liu,
Cuicui Zhang,
Chuchu Wei,
Xin Liu,
Mugui Wang,
Feifei Yu,
Qi Xie,
Jumin Tu
Publication year - 2015
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.15.00879
Subject(s) - ubiquitin ligase , abscisic acid , oryza sativa , microbiology and biotechnology , hydrogen peroxide , ubiquitin , botany , biology , proteasome , reactive oxygen species , biochemistry , seedling , peroxidase , chemistry , enzyme , gene
Heat stress often results in the generation of reactive oxygen species, such as hydrogen peroxide, which plays a vital role as a secondary messenger in the process of abscisic acid (ABA)-mediated stomatal closure. Here, we characterized the rice (Oryza sativa) HEAT TOLERANCE AT SEEDLING STAGE (OsHTAS) gene, which plays a positive role in heat tolerance at the seedling stage. OsHTAS encodes a ubiquitin ligase localized to the nucleus and cytoplasm. OsHTAS expression was detected in all tissues surveyed and peaked in leaf blade, in which the expression was concentrated in mesophyll cells. OsHTAS was responsive to multiple stresses and was strongly induced by exogenous ABA. In yeast two-hybrid assays, OsHTAS interacted with components of the ubiquitin/26S proteasome system and an isoform of rice ascorbate peroxidase. OsHTAS modulated hydrogen peroxide accumulation in shoots, altered the stomatal aperture status of rice leaves, and promoted ABA biosynthesis. The results suggested that the RING finger ubiquitin E3 ligase OsHTAS functions in leaf blade to enhance heat tolerance through modulation of hydrogen peroxide-induced stomatal closure and is involved in both ABA-dependent and DROUGHT AND SALT TOLERANCE-mediated pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom