z-logo
open-access-imgOpen Access
WHIRLY1 Functions in the Control of Responses to Nitrogen Deficiency But Not Aphid Infestation in Barley
Author(s) -
Gloria Comadira,
Brwa Rasool,
Barbara Kaprinska,
Belén MárquezGarcía,
Jennifer Morris,
Susan R. Verrall,
Micha Bayer,
Pete E. Hedley,
Robert D. Hancock,
Christine H. Foyer
Publication year - 2015
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.15.00580
Subject(s) - biology , photosynthesis , chloroplast , botany , chlorophyll , nitrogen deficiency , aphid , wild type , hordeum vulgare , cytochrome f , myzus persicae , photoinhibition , biochemistry , thylakoid , gene , nitrogen , chemistry , photosystem ii , poaceae , organic chemistry , mutant
WHIRLY1 is largely targeted to plastids, where it is a major constituent of the nucleoids. To explore WHIRLY1 functions in barley (Hordeum vulgare), RNA interference-knockdown lines (W1-1, W1-7, and W1-9) that have very low levels of HvWHIRLY1 transcripts were characterized in plants grown under optimal and stress conditions. The WHIRLY1-1 (W1-1), W1-7, and W1-9 plants were phenotypically similar to the wild type but produced fewer tillers and seeds. Photosynthesis rates were similar in all lines, but W1-1, W1-7, and W1-9 leaves had significantly more chlorophyll and less sucrose than the wild type. Transcripts encoding specific subsets of chloroplast-localized proteins, such as ribosomal proteins, subunits of the RNA polymerase, and thylakoid nicotinamide adenine dinucleotide (reduced) and cytochrome b6/f complexes, were much more abundant in the W1-7 leaves than the wild type. Although susceptibility of aphid (Myzus persicae) infestation was similar in all lines, the WHIRLY1-deficient plants showed altered responses to nitrogen deficiency, maintaining higher photosynthetic CO2 assimilation rates than the wild type under limiting nitrogen. Although all lines showed globally similar low nitrogen-dependent changes in transcripts and metabolites, the increased abundance of FAR-RED IMPAIRED RESPONSE1-like transcripts in nitrogen-deficient W1-7 leaves infers that WHIRLY1 has a role in communication between plastid and nuclear genes encoding photosynthetic proteins during abiotic stress.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom