z-logo
open-access-imgOpen Access
A Cytosolic ADP-Glucose Pyrophosphorylase Is a Feature of Graminaceous Endosperms, But Not of Other Starch-Storing Organs
Author(s) -
Diane M. Beckles,
Alison M. Smith,
Tom ap Rees
Publication year - 2001
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.125.2.818
Subject(s) - endosperm , hordeum , hordeum vulgare , starch , biochemistry , biology , gene isoform , cytosol , enzyme , botany , chemistry , poaceae , gene
The occurrence of an extra-plastidial isoform of ADP-glucose (Glc) pyrophosphorylase (AGPase) among starch-storing organs was investigated in two ways. First, the possibility that an extra-plastidial isoform arose during the domestication of cereals was studied by comparing the intracellular distribution of enzyme activity and protein in developing endosperm of noncultivated Hordeum species with that previously reported for cultivated barley (Hordeum vulgare). As in cultivated barley, the AGPase of H. vulgare subsp. spontaneum and Hordeum murinum endosperm is accounted for by a major extra-plastidial and a minor plastidial isoform. Second, the ratio of ADP-Glc to UDP-Glc was used as an indication of the intracellular location of the AGPase activity in a wide range of starch-synthesizing organs. The ratio is expected to be high in organs in which UDP-Glc and ADP-Glc are synthesized primarily in the cytosol, because the reactions catalyzed by AGPase and UDP-Glc pyrophosphorylase will be coupled and close to equilibrium. This study revealed that ADP-Glc contents and the ratio of ADP-Glc to UDP-Glc were higher in developing graminaceous endosperms than in any other starch-storing organs. Taken as a whole the results indicate that an extra-plastidial AGPase is important in ADP-Glc synthesis in graminaceous endosperms, but not in other starch-storing organs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom