z-logo
open-access-imgOpen Access
Regulation of Two Carotenoid Biosynthesis Genes Coding for Phytoene Synthase and Carotenoid Hydroxylase during Stress-Induced Astaxanthin Formation in the Green Alga Haematococcus pluvialis
Author(s) -
Jens Steinbrenner,
Hartmut Linden
Publication year - 2001
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.125.2.810
Subject(s) - astaxanthin , phytoene synthase , haematococcus pluvialis , phytoene desaturase , carotenoid , biochemistry , phytoene , biology , biosynthesis , enzyme , lycopene
Astaxanthin is a high-value carotenoid used as a pigmentation source in fish aquaculture. In addition, a beneficial role of astaxanthin as a food supplement for humans is becoming evident. The unicellular green alga Haematococcus pluvialis seems to be a suitable source for natural astaxanthin. Astaxanthin accumulation in H. pluvialis occurs in response to environmental stress such as high light and salt stress. Here, the isolation of the H. pluvialis carotenoid biosynthesis gene phytoene synthase is reported. Furthermore, the expression of phytoene synthase and carotenoid hydroxylase, two key enzymes in astaxanthin biosynthesis, was investigated at the transcriptional level. The application of environmental stress resulted in increased steady-state mRNA levels of both genes. High-light intensity led to a transient increase in carotenoid hydroxylase mRNA followed by moderate astaxanthin accumulation. In contrast, salt stress in combination with high light resulted in a sustained increase in both transcripts. The addition of compounds inducing reactive oxygen species did not influence transcript levels of phytoene synthase and carotenoid hydroxylase. The application of an inhibitor of photosynthesis, 3-(3, 4-dichlorophenyl)-1,1-dimethylurea, indicated that the light-induced expression of these carotenoid biosynthesis genes may be under photosynthetic control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom