How Alfalfa Root Hairs Discriminate between Nod Factors and Oligochitin Elicitors
Author(s) -
Hubert Felle,
Éva Kondorosi,
Ádám Kondorosi,
M.O. Schultze
Publication year - 2000
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.124.3.1373
Subject(s) - cytosol , root hair , depolarization , nod , hyperpolarization (physics) , nod factor , chemistry , biochemistry , biology , biophysics , microbiology and biotechnology , botany , bacteria , stereochemistry , symbiosis , gene , genetics , rhizobia , nuclear magnetic resonance spectroscopy , enzyme
Using ion-selective microelectrodes, the problem of how signals coming from symbiotic partners or from potential microbial intruders are distinguished was investigated on root hairs of alfalfa (Medicago sativa). The Nod factor, NodRm-IV(C16:2,S), was used to trigger the symbiotic signal and (GlcNAc)8 was selected from (GlcNAc)4-8, to elicit defense-related reactions. To both compounds, root hairs responded with initial transient depolarizations and alkalinizations, which were followed by a hyperpolarization and external acidification in the presence of (GlcNAc)8. We propose that alfalfa recognizes tetrameric Nod factors and N-acetylchitooligosaccharides (n = 4–8) with separate perception sites: (a) (GlcNAc)4 and (GlcNAc)6 reduced the depolarization response to (GlcNAc)8, but not to NodRm-IV(C16:2,S); and (b) depolarization and external alkalization were enhanced when NodRm-IV(C16:2,S) and (GlcNAc)8 were added jointly without preincubation. We suggest further that changes in cytosolic pH and Ca2+ are key events in the transduction, as well as in the discrimination of signals leading to symbiotic responses or defense-related reactions. To (GlcNAc)8, cells responded with a cytosolic acidification, and they responded to NodRm-IV(C16:2,S) with a sustained alkalinization. When both agents were added jointly, the cytosol first alkalized and then acidified. (GlcNAc)8 and NodRm-IV(C16:2,S) transiently increased cytosolic Ca2+ activity, whereby the response to (GlcNAc)8 exceeded the one to NodRm-IV(C16:2,S) by at least a factor of two.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom