z-logo
open-access-imgOpen Access
Recombinant Brassinosteroid Insensitive 1 Receptor-Like Kinase Autophosphorylates on Serine and Threonine Residues and Phosphorylates a Conserved Peptide Motif in Vitro
Author(s) -
ManHo Oh,
W. Keith Ray,
Steven C. Huber,
John M. Asara,
Douglas A. Gage,
Steven D. Clouse
Publication year - 2000
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.124.2.751
Subject(s) - autophosphorylation , biochemistry , phosphorylation , serine , biology , protein kinase domain , threonine , brassinosteroid , kinase , peptide , mutant , chemistry , arabidopsis , protein kinase a , gene
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a putative Leucine-rich repeat receptor kinase in Arabidopsis that has been shown by genetic and molecular analysis to be a critical component of brassinosteroid signal transduction. In this study we examined some of the biochemical properties of the BRI1 kinase domain (BRI1-KD) in vitro, which might be important predictors of in vivo function. Recombinant BRI1-KD autophosphorylated on serine (Ser) and threonine (Thr) residues with p-Ser predominating. Matrix-assisted laser desorption/ionization mass spectrometry identified a minimum of 12 sites of autophosphorylation in the cytoplasmic domain of BRI1, including five in the juxtamembrane region (N-terminal to the catalytic KD), five in the KD (one each in sub-domains I and VIa and three in sub-domain VIII), and two in the carboxy terminal region. Five of the sites were uniquely identified (Ser-838, Thr-842, Thr-846, Ser-858, and Thr-872), whereas seven were localized on short peptides but remain ambiguous due to multiple Ser and/or Thr residues within these peptides. The inability of an active BRI1-KD to transphosphorylate an inactive mutant KD suggests that the mechanism of autophosphorylation is intramolecular. It is interesting that recombinant BRI1-KD was also found to phosphorylate certain synthetic peptides in vitro. To identify possible structural elements required for substrate recognition by BRI1-KD, a series of synthetic peptides were evaluated, indicating that optimum phosphorylation of the peptide required R or K residues at P - 3, P - 4, and P + 5 (relative to the phosphorylated Ser at P = 0).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom