Molecular Cloning and Characterization of ATP-Phosphoribosyl Transferase from Arabidopsis, a Key Enzyme in the Histidine Biosynthetic Pathway
Author(s) -
Daisaku Ohta,
Ko Fujimori,
Masaharu Mizutani,
Yumiko Nakayama,
Rosarin Kunpaisal-Hashimoto,
Silvia Münzer,
Akiko Kozaki
Publication year - 2000
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.122.3.907
Subject(s) - arabidopsis , biochemistry , biology , mutant , gene isoform , transferase , gene , atp synthase , saccharomyces cerevisiae , enzyme , microbiology and biotechnology
We have characterized two isoforms of ATP-phosphoribosyl transferase (ATP-PRT) from Arabidopsis (AtATP-PRT1 [accession no. AB025251] and AtATP-PRT2), catalyzing the first step of the pathway of hisidine (His) biosynthesis. The primary structures deduced from AtATP-PRT1 and AtATP-PRT2 cDNAs share an overall amino acid identity of 74.6% and contain N-terminal chloroplast transit peptide sequences. DNA-blot analyses indicated that the ATP-PRTs in Arabidopsis are encoded by two separate genes with a closely similar gene structural organization. Both gene transcripts were detected throughout development, and protein-blot analysis revealed predominant accumulation of the AtATP-PRT proteins in Arabidopsis leaves. The His auxotrophy of a his1 mutant of Saccharomyces cerevisiae was suppressed by the transformation with AtATP-PRT1 and AtATP-PRT2 cDNAs, indicating that both isoforms are functionally active ATP-PRT enzymes. The K(m) values for ATP and phosphoribosyl pyrophosphate of the recombinant AtATP-PRT proteins were comparable to those of the native ATP-PRTs from higher plants and bacteria. It was demonstrated that the recombinant AtATP-PRTs were inhibited by L-His (50% inhibition of initial activity = 40-320 microM), suggesting that His biosynthesis was regulated in plants through feedback inhibition by L-His.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom