z-logo
open-access-imgOpen Access
Exposure to Low Irradiances Favors the Synthesis of 9-cis β,β-Carotene in Dunaliella salina (Teod.)
Author(s) -
Sandra Orset,
Andrew Young
Publication year - 2000
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.122.2.609
Subject(s) - dunaliella salina , phytoene , carotenoid , lycopene , irradiance , beta carotene , carotene , isomerization , chemistry , stereochemistry , biology , botany , food science , biochemistry , algae , physics , optics , catalysis
We examined the effect of irradiance on the synthesis of beta-carotene and its isomers by Dunaliella salina. Growth irradiance had a marked effect both on growth of the alga (which was suppressed at both low and high irradiances) and on the accumulation of beta-carotene. The accumulation of beta-carotene but not alpha-carotene was closely linked to an increase in irradiance. Growth at low irradiances (20-50 micromol m(-2) s(-1)) promoted a high ratio of 9-cis to all-trans beta-carotene (>2:1), while exposure to high irradiances (200-1,250 micromol m(-2) s(-1)) resulted in a large reduction in this ratio (to <0.45:1). A similar pattern was seen for the geometric isomers of alpha-carotene, with exposure to low irradiance favoring the accumulation of the 9-cis form. The carotenoid biosynthesis inhibitors 4-chloro-5(methylamino)-2-(alpha-alpha-alpha-trifluoro-m-tolyl)-3-(sH )-pyridazinone and 2-(4-chlorophenylthio)triethylamine caused the accumulation of the precursors phytoene and lycopene, respectively, in D. salina. High-performance liquid chromatography and infrared analysis showed that phytoene adopted the 15-cis and all-trans forms (as in higher plants), and that lycopene primarily adopted the all-trans form. This indicates that isomerization of beta-carotene takes place during or after cyclization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom