z-logo
open-access-imgOpen Access
Phenylarsine Oxide Inhibits the Fusicoccin-Induced Activation of Plasma Membrane H+-ATPase
Author(s) -
C. Olivari,
Cristina Albumi,
Maria Chiara Pugliarello,
Maria Ida De Michelis
Publication year - 2000
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.122.2.463
Subject(s) - phenylarsine oxide , fusicoccin , atpase , biochemistry , chemistry , arabidopsis , protein tyrosine phosphatase , phosphatase , enzyme , mutant , gene
To investigate the mechanism by which fusicoccin (FC) induces the activation of the plasma membrane (PM) H(+)-ATPase, we used phenylarsine oxide (PAO), a known inhibitor of protein tyrosine-phosphatases. PAO was supplied in vivo in the absence or presence of FC to radish (Raphanus sativus L.) seedlings and cultured Arabidopsis cells prior to PM extraction. Treatment with PAO alone caused a slight decrease of PM H(+)-ATPase activity and, in radish, a decrease of PM-associated 14-3-3 proteins. When supplied prior to FC, PAO drastically inhibited FC-induced activation of PM H(+)-ATPase, FC binding to the PM, and the FC-induced increase of the amount of 14-3-3 associated with the PM. On the contrary, PAO was completely ineffective on all of the above-mentioned parameters when supplied after FC. The H(+)-ATPase isolated from PAO-treated Arabidopsis cells maintained the ability to respond to FC if supplied with exogenous, nonphosphorylated 14-3-3 proteins. Altogether, these results are consistent with a model in which the dephosphorylated state of tyrosine residues of a protein(s), such as 14-3-3 protein, is required to permit FC-induced association between the 14-3-3 protein and the PM H(+)-ATPase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom