z-logo
open-access-imgOpen Access
The SLENDER Gene of Pea Encodes a Gibberellin 2-Oxidase
Author(s) -
David Martin,
William M. Proebsting,
Peter Hedden
Publication year - 1999
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.121.3.775
Subject(s) - biology , gibberellin , mutant , gene , oxidase test , complementary dna , population , microbiology and biotechnology , genetics , biochemistry , enzyme , demography , sociology
The amount of active gibberellin (GA) in plant tissues is determined in part by its rate of catabolism through oxidation at C-2. In pea (Pisum sativum L.) seeds, GA 2-oxidation is controlled by the SLN (SLENDER) gene, a mutation of which produces seedlings characterized by a slender or hyper-elongated phenotype. We cloned a GA 2-oxidase cDNA from immature pea seeds by screening an expression library for enzyme activity. The clone contained a full-length open reading frame encoding a protein of 327 amino acids. Lysate of bacterial cultures expressing the protein converted the C(19)-GAs, GA(1), GA(4), GA(9), and GA(20) to the corresponding 2beta-hydroxy products. GA(9) and GA(20) were also converted to GA(51) and GA(29) catabolites, respectively. The gene appeared to be one member of a small family of GA 2-oxidases in pea. Transcript was found predominantly in roots, flowers, young fruits, and testae of seeds. The corresponding transcript from sln pea contained a point mutation and did not produce active enzyme when expressed heterologously. RFLP analysis of a seedling population segregating for SLN and sln alleles showed the homozygous mutant allele co-segregating with the characteristic slender phenotype. We conclude that SLN encodes GA 2-oxidase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom