The Enzymatic Activity of Fungal Xylanase Is Not Necessary for Its Elicitor Activity
Author(s) -
J. Enkerli,
Georg Felix,
Thomas Boller
Publication year - 1999
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.121.2.391
Subject(s) - elicitor , xylanase , nicotiana tabacum , biochemistry , lycopersicon , enzyme , biology , enzyme assay , trichoderma reesei , cellulase , botany , gene
Fungal xylanases from Trichoderma spp. are potent elicitors of defense responses in various plants. To determine whether enzymatic activity is necessary for elicitor activity, we used site-directed mutagenesis to reduce the catalytic activity of xylanase II from Trichoderma reesei. For this, the glutamic acid residue at position 210, which is part of the active center in this family of enzymes, was changed to either aspartic acid (E210D) or serine (E210S). Wild-type and mutated forms of xylanase II were expressed in yeast cells and purified to homogeneity. Compared with the wild-type form of xylanase II, E210D had >100-fold and E210S 1,000-fold lower enzymatic activity. In contrast, these mutated forms showed no comparable drop in elicitor activity. They fully stimulated medium alkalinization and ethylene biosynthesis in suspension-cultured tomato (Lycopersicon esculentum) cells, as well as hypersensitive necrosis in leaves of tomato and tobacco (Nicotiana tabacum) plants. These results provide direct evidence that enzyme activity is not necessary for elicitor activity of fungal xylanase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom