z-logo
open-access-imgOpen Access
In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts1
Author(s) -
Bente Wischmann,
Tom Hamborg Nielsen,
Birger Lindberg Møller
Publication year - 1999
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.119.2.455
Subject(s) - amyloplast , biochemistry , starch , chemistry , biosynthesis , isoamylase , plastid , chloroplast , enzyme , gene , amylase
Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom