z-logo
open-access-imgOpen Access
Tracheary Element Differentiation Uses a Novel Mechanism Coordinating Programmed Cell Death and Secondary Cell Wall Synthesis1
Author(s) -
Andrew Groover,
Alan M. Jones
Publication year - 1999
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.119.2.375
Subject(s) - mechanism (biology) , microbiology and biotechnology , programmed cell death , cell wall , cellular differentiation , secondary cell wall , cell , chemistry , biology , botany , apoptosis , biochemistry , physics , gene , quantum mechanics
Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequisite for postmortem developmental events, including autolysis and chromatin degradation. A 40-kD serine protease is secreted during secondary cell wall synthesis, which may be the coordinating factor between secondary cell wall synthesis and PCD. Specific proteolysis of the extracellular matrix is necessary and sufficient to trigger Ca2+ influx, vacuole collapse, cell death, and chromatin degradation, suggesting that extracellular proteolysis plays a key regulatory role during PCD. We propose a model in which secondary cell wall synthesis and cell death are coordinated by the concomitant secretion of the 40-kD protease and secondary cell wall precursors. Subsequent cell death is triggered by a critical activity of protease or the arrival of substrate signal precursor corresponding with the completion of a functional secondary cell wall.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom