z-logo
open-access-imgOpen Access
Relationship between CO2 Assimilation, Photosynthetic Electron Transport, and Active O2 Metabolism in Leaves of Maize in the Field during Periods of Low Temperature1
Author(s) -
Michael J. Fryer,
James R. Andrews,
Kevin Oxborough,
David A. Blowers,
Neil R. Baker
Publication year - 1998
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.116.2.571
Subject(s) - photosynthesis , lipid peroxidation , glutathione reductase , chemistry , peroxidase , electron transport chain , photosystem ii , reductase , biochemistry , lipoxygenase , photosystem , superoxide dismutase , antioxidant , botany , biology , enzyme , glutathione peroxidase
Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (phiPSII) and CO2 assimilation (phiCO2) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O2 species and the levels of key antioxidants were also measured. When leaves were exposed to low temperatures during development, the ratio of phiPSII/phiCO2 was elevated, indicating the operation of an alternative sink to CO2 for photosynthetic reducing equivalents. The activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and superoxide dismutase and the levels of ascorbate and alpha-tocopherol were also elevated during chilling periods. This supports the hypothesis that the relative flux of photosynthetic reducing equivalents to O2 via the Mehler reaction is higher when leaves develop under chilling conditions. Lipoxygenase activity and lipid peroxidation were also increased during low temperatures, suggesting that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom