z-logo
open-access-imgOpen Access
Antenna Size Dependency of Photoinactivation of Photosystem II in Light-Acclimated Pea Leaves
Author(s) -
YounIl Park,
W. S. Chow,
Jan M. Anderson
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.115.1.151
Subject(s) - photosystem ii , photosynthesis , pisum , chlorophyll fluorescence , antenna (radio) , photoinhibition , photochemistry , biophysics , chlorophyll , botany , biology , chemistry , telecommunications , computer science
Utilization of absorbed light energy by photosystem (PS) II for O2 evolution depends on the light-harvesting antenna size, but the role of antenna size in the photoinactivation of PSII seems controversial. To address this controversy, pea (Pisum sativum L.) plants were grown in low (50 [mu]mol m-2 s-1) or high (650 [mu]mol m-2 s-1) light. The doubled functional antenna size of PSII in low light allows each PSII to utilize twice as many photons at given flash light energies for O2 evolution. The application of a target theory to depict the photon dose dependency of PSII photoinactivation measured by repetitive-flash O2 yield and the ratio of variable to maximal chlorophyll fluorescence indicates that photoinactivation of PSII is probably a single-hit process in which repair or photoprotective mechanisms are only slightly involved. Furthermore, the exacerbation of photoinactivation of PSII with greater antenna size under anaerobic conditions strongly indicates that photoinactivation of PSII depends on antenna size.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom