z-logo
open-access-imgOpen Access
Nitrogenase Activity Is Affected by Reduced Partial Pressures of N2 and NO3- 1
Author(s) -
Jürg M. Blumenthal,
Michael P. Russelle,
Carroll P. Vance
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.114.4.1405
Subject(s) - nitrogenase , partial pressure , chemistry , environmental chemistry , biophysics , food science , nitrogen , biology , oxygen , nitrogen fixation , organic chemistry
Optimal use of legumes in cropping systems requires a thorough understanding of the interaction between inorganic N nutrition and symbiotic N2 fixation. Our objective was to test the hypothesis that increased NO3- uptake by alfalfa (Medicago sativa L.) would compensate for lower N2 fixation caused by low partial pressure of N2. Root systems of hydroponically grown alfalfa at 2 mg L-1 NO3--N were exposed to (a) 80% N2, (b) 7% N2, (c) 2% N2, or (d) 0% N2. Exposure to reduced partial pressures of N2 reduced total nitrogenase activity (TNA, measured as H2 production in 20% O2 and 80% Ar) by 40% within less than 30 min, followed by a recovery period over the next 30 min to initial activity. Five hours after treatments began, the TNA of plants exposed to 7 and 2% N2 was substantially higher than pretreatment activities, whereas the TNA of plants exposed either to 0 or 80% N2 did not differ from pretreatment values. The decline in TNA due to NO3- exposure over 4 d was not affected by reduced partial pressure of N2. During the 1st h the proportion of electrons used for the reduction of N2 fell from 0.52 to 0.23 for plants exposed to 7% N2, and to 0.09 for plants exposed to 2% N2, and remained unchanged for the rest of the experiment. Although the hypothesis that alfalfa compensated with increased NO3- uptake for lower N2 fixation was not validated by our results, we unexpectedly demonstrated that the decline in TNA upon exposure to NO3- was independent of the N2-fixing efficiency (i.e. the amount of N2 reduced by nitrogenase) of the symbiosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here