z-logo
open-access-imgOpen Access
The N-Terminal Propeptide of the Precursor to Sporamin Acts as a Vacuole-Targeting Signal even at the C Terminus of the Mature Part in Tobacco Cells
Author(s) -
Yasuhiro Koide,
Hiroyuki Hirano,
Ken Matsuoka,
Kōichi Nakamura
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.114.3.863
Subject(s) - vacuole , biochemistry , asparagine , biology , arginine , mutant , amino acid , proline , isoleucine , nicotiana tabacum , glycine , leucine , n terminus , peptide sequence , microbiology and biotechnology , cytoplasm , gene
An asparagine-proline-isoleucine-arginine-leucine (NPIRL) and its related sequences in the N-terminal propeptides (NTPP) of several plant vacuolar proteins, including that of sporamin from sweet potato (SPO) function as vacuole-targeting determinants in a manner that is distinct from the vacuole-targeting determinant in the CTPPs of other plant vacuolar proteins. When the mutant precursor to sporamin, SPO-NTPP (in which NTPP was moved to the C terminus of the mature part), was expressed in tobacco (Nicotiana tabacum) cells, the pro-form was efficiently targeted to the vacuole and the NTPP was cleaved off. Unlike the results obtained with the wild-type precursor, substitution of the NPIRL sequence in the C-terminally located NTPP to asparagine-proline-glycine-arginine-leucine in the SPO-isoleucine-28-to-glycine mutant resulted in missorting of less than 20% of the pro-form to the medium. Unlike the vacuolar transport of SPO-NTPP, the vacuolar transport of SPO-isoleucine-28-to-glycine was strongly inhibited by 33 microM wortmannin, which is similar to the C-terminal propeptide-mediated vacuolar transport. These results suggest that the vacuole-targeting function of the NPIRL sequence is not strictly dependent on its location at the N terminus of a protein and that the C-terminally located mutant NTPP acquired some physicochemical properties of the C-terminal vacuole-targeting sequence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom