z-logo
open-access-imgOpen Access
Restriction of Chlorophyll Synthesis Due to Expression of Glutamate 1-Semialdehyde Aminotransferase Antisense RNA Does Not Reduce the Light-Harvesting Antenna Size in Tobacco
Author(s) -
Heiko Härtel,
Elisabeth Kruse,
Bernhard Grimm
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.113.4.1113
Subject(s) - photosystem ii , nicotiana tabacum , biology , photosynthesis , photosynthetic reaction centre , chlorophyll , chlorophyll fluorescence , transgene , botany , biochemistry , biophysics , gene
The formation of 5-aminolevulinate is a key regulatory step in tetrapyrrole biosynthesis. In higher plants, glutamate 1-semialdehyde aminotransferase (GSA-AT) catalyzes the last step in the sequential conversion of glutamate to 5-aminolevulinate. Antisense RNA synthesis for GSA-AT leads to reduced GSA-AT protein levels in tobacco (Nicotiana tabacum L.) plants. We have used these transgenic plants for studying the significance of chlorophyll (Chl) availability for assembly of the light-harvesting apparatus. To avoid interfering photoinhibitory stress, plants were cultivated under a low photon flux density of 70 [mu]mol photons m-2 s-1. Decreased GSA-AT expression does not seem to suppress other enzymic steps in the Chl pathway, indicating that reduced Chl content in transgenic plants (down to 12% of the wild-type level) is a consequence of reduced GSA-AT activity. Chl deficiency correlated with a drastic reduction in the number of photosystem I and photosystem II reaction centers and their surrounding antenna on a leaf area basis. Different lines of evidence from the transgenic plants indicate that complete assembly of light-harvesting pigment-protein complexes is given preference over synthesis of new reaction center/core complexes, resulting in fully assembled photosynthetic units with no reduction in antenna size. Photosynthetic oxygen evolution rates and in vivo Chl fluorescence showed that GSA-AT antisense plants are photochemically competent. Thus, we suggest that under the growth conditions chosen during this study, plants tend to maintain their light-harvesting antenna size even under limited Chl supply.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here