Abscisic Acid Activates a 48-Kilodalton Protein Kinase in Guard Cell Protoplasts
Author(s) -
Izumi C. Mori,
Susumu Muto
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.113.3.833
Subject(s) - mitogen activated protein kinase kinase , cyclin dependent kinase 9 , protein kinase a , map kinase kinase kinase , map2k7 , guard cell , ask1 , cyclin dependent kinase 2 , protein kinase c , cyclin dependent kinase 4 , c raf , biology , biochemistry , staurosporine , microbiology and biotechnology , kinase , chemistry
A 49- and a 46-kD Ca2+-independent protein kinase and a 53-kD Ca2+-dependent protein kinase were detected in Vicia faba guard cell protoplasts (GCPs) by an in-gel protein kinase assay using myelin basic protein as a substrate. A 48-kD protein kinase designated as abscisic acid (ABA)-responsive protein kinase (ABR kinase) appeared when GCPs were treated with ABA. The activation of ABR kinase was suppressed by the protein kinase inhibitor staurosporine, indicating that a putative activator protein kinase phosphorylates and activates ABR kinase. The treatment of GCPs with 1,2-bis(o-aminophenoxy)ethan-N,N,N′,N′-tetraacetic acid, a calcium chelator, suppressed the activation of ABR kinase, suggesting that an influx of extracellular Ca2+ is required for the activation. Staurosporine and K-252a inhibited both the activity of ABR kinase and the stomatal closure induced by ABA treatment of V. faba epidermal peels. These results suggest that ABR kinase and its activator kinase may consist of a protein kinase cascade in a signal transduction pathway linking ABA perception to stomatal closure. The mobility of the 53-kD Ca2+-dependent protein kinase in sodium dodecyl sulfate-polyacrylamide gel was shifted upon Ca2+ binding to the enzyme, thus exhibiting the characteristics of a Ca2+-dependent or calmodulin-like domain protein kinase. This kinase may be the activator of ABR kinase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom