Control of Mitosis by Phytochrome and a Blue-Light Receptor in Fern Spores
Author(s) -
M. Furuya,
Masao KANNO,
Haruko Okamoto,
Shin-ichi Fukuda Shin-ichi Fukuda,
Masamitsu Wada
Publication year - 1997
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.113.3.677
Subject(s) - protonema , phytochrome , spore , mitosis , biology , biophysics , germination , far red , botany , nucleus , blue light , fern , microbiology and biotechnology , red light , moss , optics , physics
The first mitosis in spores of the fern A. capillus-veneris was observed under a microscope equipped with Nomarski optics with irradiation from a safelight at 900 nm, and under a fluorescent microscope after staining with 4[prime],6-diamidino-2-phenylindole. During imbibition the nucleus remained near one corner of each tetrahedron-shaped dormant spore, and asymmetric cell division occurred upon brief irradiation with red light. This red light-induced mitosis was photoreversibly prevented by subsequent brief exposure to far-red light and was photo-irreversibly prevented by brief irradiation with blue light. However, neither far-red nor blue light affected the germination rate when spores were irradiated after the first mitosis. Therefore, the first mitosis in the spores appears to be the crucial step for photoinduction of spore germination. Furthermore, experiments using a microbeam of red or blue light demonstrated that blue light was effective only when exposed to the nucleus, and no specific intracellular photoreceptive site for red light was found in the spores. Therefore, phytochrome in the far-red absorbing form induces the first mitosis in germinating spores but prevents the subsequent mitosis in protonemata, whereas a blue-light receptor prevents the former but induces the latter.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom