z-logo
open-access-imgOpen Access
Widespread Long Noncoding RNAs as Endogenous Target Mimics for MicroRNAs in Plants
Author(s) -
HuaJun Wu,
Zhimin Wang,
Meng Wang,
XiuJie Wang
Publication year - 2013
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.113.215962
Subject(s) - biology , microrna , arabidopsis , arabidopsis thaliana , competing endogenous rna , computational biology , rna , gene silencing , endogeny , genetics , microbiology and biotechnology , gene , long non coding rna , biochemistry , mutant
Target mimicry is a recently identified regulatory mechanism for microRNA (miRNA) functions in plants in which the decoy RNAs bind to miRNAs via complementary sequences and therefore block the interaction between miRNAs and their authentic targets. Both endogenous decoy RNAs (miRNA target mimics) and engineered artificial RNAs can induce target mimicry effects. Yet until now, only the Induced by Phosphate Starvation1 RNA has been proven to be a functional endogenous microRNA target mimic (eTM). In this work, we developed a computational method and systematically identified intergenic or noncoding gene-originated eTMs for 20 conserved miRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The predicted miRNA binding sites were well conserved among eTMs of the same miRNA, whereas sequences outside of the binding sites varied a lot. We proved that the eTMs of miR160 and miR166 are functional target mimics and identified their roles in the regulation of plant development. The effectiveness of eTMs for three other miRNAs was also confirmed by transient agroinfiltration assay.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom