Identification of a Chloroplast Coenzyme A-Binding Protein Related to the Peroxisomal Thiolases
Author(s) -
Liming Yang,
Gayle K. Lamppa
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.4.1641
Subject(s) - chloroplast , peroxisome , identification (biology) , biochemistry , coenzyme a , cofactor , biology , chemistry , botany , enzyme , gene , reductase
A 30-kD coenzyme A (CoA)-binding protein was isolated from spinach (Spinacea oleracea) chloroplast soluble extracts using affinity chromatography under conditions in which 95% of the total protein was excluded. The 30-kD protein contains an eight-amino-acid sequence, DVRLYYGA, that is identical to a region in a 36-kD protein of unknown function that is encoded by a kiwifruit (Actinidia deliciosa) cDNA. Southern blotting also detected a spinach gene that is related to the kiwifruit cDNA. The kiwifruit 36-kD protein that was synthesized in Escherichia coli was imported into chloroplasts and cleaved to a 30-kD form; it was processed to the same size in an organelle-free assay. Furthermore, the kiwifruit protein specifically bound to CoA. The kiwifruit protein contains a single cysteine within a domain that is related to the peroxisomal beta-ketoacyl-CoA thiolases, which catalyze the CoA-dependent degradative step of fatty acid beta-oxidation. Within 50 amino acids surrounding the cysteine, considered to be part of the thiolase active site, the kiwifruit protein shows approximately 26% sequence identity with the mango, cucumber, and rat peroxisomal thiolases. N-terminal alignment with these enzymes, relative to the cysteine, indicates that the 36-kD protein is cleaved after serine-58 during import, agreeing with the estimated size (approximately 6 kD) of a transit peptide. The 30-kD protein is also related to the E. coli and mitochondrial thiolases, as well as to the acetoacetyl-CoA thiolases of prokaryotes. Features distinguish it from members of the thiolase family, suggesting that it carries out a related but novel function. The protein is more distantly related to chloroplast beta-ketoacyl-acyl carrier protein synthase III, the initial condensing enzyme of fatty acid synthetase that utilizes acetyl-CoA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom