Direct Inhibition of Plant Mitochondrial Respiration by Elevated CO2
Author(s) -
Miquel A. GonzàlezMeler,
Miquel RibasCarbó,
James N. Siedow,
Bert G. Drake
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.3.1349
Subject(s) - salicylhydroxamic acid , alternative oxidase , cytochrome c oxidase , respiration , biochemistry , succinate dehydrogenase , mitochondrion , cyanide , electron transport chain , chemistry , enzyme , cytochrome , oxidase test , cytochrome c , biology , botany , inorganic chemistry
Doubling the concentration of atmospheric CO2 often inhibits plant respiration, but the mechanistic basis of this effect is unknown. We investigated the direct effects of increasing the concentration of CO2 by 360 [mu]L L-1 above ambient on O2 uptake in isolated mitochondria from soybean (Glycine max L. cv Ransom) cotyledons. Increasing the CO2 concentration inhibited the oxidation of succinate, external NADH, and succinate and external NADH combined. The inhibition was greater when mitochondria were preincubated for 10 min in the presence of the elevated CO2 concentration prior to the measurement of O2 uptake. Elevated CO2 concentration inhibited the salicylhydroxamic acid-resistant cytochrome pathway, but had no direct effect on the cyanide-resistant alternative pathway. We also investigated the direct effects of elevated CO2 concentration on the activities of cytochrome c oxidase and succinate dehydrogenase (SDH) and found that the activity of both enzymes was inhibited. The kinetics of inhibition of cytochrome c oxidase were time-dependent. The level of SDH inhibition depended on the concentration of succinate in the reaction mixture. Direct inhibition of respiration by elevated CO2 in plants and intact tissues may be due at least in part to the inhibition of cytochrome c oxidase and SDH.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom