z-logo
open-access-imgOpen Access
Changes in Cytokinin Content and Cytokinin Oxidase Activity in Response to Derepression of ipt Gene Transcription in Transgenic Tobacco Calli and Plants
Author(s) -
Václav Motyka,
Martin Faiss,
M. Strand,
M. Kamínek,
Thomas Schmülling
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.3.1035
Subject(s) - cytokinin , derepression , nicotiana tabacum , callus , oxidase test , biology , biochemistry , enzyme , microbiology and biotechnology , gene expression , auxin , gene , botany , psychological repression
Metabolic control of cytokinin oxidase by its substrate was investigated in planta using wild-type (WT) and conditionally ipt gene-expressing transgenic (IPT) tobacco (Nicotiana tabacum L.) callus cultures and plants. The derepression of the tetracycline (Tc)-dependent ipt gene transcription was followed by a progressive, more than 100-fold increase in total cytokinin content in IPT calli. The activity of cytokinin oxidase extracted from these calli began to increase 16 to 20 h after gene derepression, and after 13 d it was 10-fold higher than from Tc-treated WT calli. An increase in cytokinin oxidase activity, as a consequence of elevated cytokinin levels, was found in detached leaves (8-fold after 4 d) and in roots of intact plants (4-fold after 3 d). The partially purified cytokinin oxidase from WT, repressed IPT, and Tc-derepressed IPT tobacco calli exhibited similar characteristics. It had the same broad pH optimum (pH 6.5-8.5), its activity in vitro was enhanced 4-fold in the presence of copper-imidazole, and the apparent Km(N6-[[delta]2iso-pentenyl]adenine) values were in the range of 3.1 to 4.9 [mu]M. The increase in cytokinin oxidase activity in cytokinin-overproducing tissue was associated with the accumulation of a glycosylated form of the enzyme. The present data indicate the substrate induction of cytokinin oxidase activity in different tobacco tissues, which may contribute to hormone homeostasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom