Dynamic Transcriptomic Profiles between Tomato and a Wild Relative Reflect Distinct Developmental Architectures
Author(s) -
Daniel H. Chitwood,
Julin Maloof,
Neelima Sinha
Publication year - 2013
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.213546
Subject(s) - biology , transcriptome , cluster analysis , gene expression , gene , computational biology , expression (computer science) , gene expression profiling , solanum , leverage (statistics) , evolutionary biology , genetics , botany , computer science , artificial intelligence , programming language
Developmental differences between species commonly result from changes in the tissue-specific expression of genes. Clustering algorithms are a powerful means to detect coexpression across tissues in single species but are not often applied to multidimensional data sets, such as gene expression across tissues in multiple species. As next-generation sequencing approaches enable interspecific analyses, methods to visualize and explore such data sets will be required. Here, we analyze a data set comprising gene expression profiles across six different tissue types in domesticated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii). We find that self-organizing maps are a useful means to analyze interspecies data, as orthologs can be assigned to independent levels of a “super self-organizing map.” We compare various clustering approaches using a principal component analysis in which the expression of orthologous pairs is indicated by two points. We leverage the expression profile differences between orthologs to look at tissue-specific changes in gene expression between species. Clustering based on expression differences between species (rather than absolute expression profiles) yields groups of genes with large tissue-by-species interactions. The changes in expression profiles of genes we observe reflect differences in developmental architecture, such as changes in meristematic activity between S. lycopersicum and S. pennellii. Together, our results offer a suite of data-exploration methods that will be important to visualize and make biological sense of next-generation sequencing experiments designed explicitly to discover tissue-by-species interactions in gene expression data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom