z-logo
open-access-imgOpen Access
Effect of Sulfur Nutrition on the Redistribution of Sulfur in Vegetative Soybean Plants
Author(s) -
Sunarpi,
John W. Anderson
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.2.623
Subject(s) - sulfur , sulfate , fraction (chemistry) , botany , nutrient , chemistry , biology , chromatography , organic chemistry
Soybean (Glycine max L.) plants were grown with sulfate at 2 (S2) or 20 [mu]M (S20) and treated with [35S]sulfate between d 36 and 38. Growth was continued with or without 20 [mu]M sulfate (i.e. S2 -> S0, S2 -> S20, etc.). When the leaves of S20 -> S20 plants were 70% expanded, they exported S and 35S label from the soluble fraction, largely as sulfate, to new expanding leaves. However, 35S label in the insoluble fraction was not remobilized. Very little of the 35S label in the soluble fraction of the leaves of S20 -> S0 plants was redistributed; most was incorporated into the insoluble fraction. The low levels of S remobilization from the insoluble fraction were attributed to the high level of N in the nutrient solution (15 mM). Most of the 35S label in S2 plants at d 38 occurred in the soluble fraction of the roots. In S2 -> S0 plants the 35S label was incorporated into the insoluble fraction of the roots, but in S2 -> S20 plants 35S label was rapidly exported to leaves 3 to 6. It was concluded that the soluble fraction of roots contains a small metabolically active pool of S and another larger pool that is in slow equilibrium with the small pool.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom