z-logo
open-access-imgOpen Access
Stimulation of Symbiotic N2 Fixation in Trifolium repens L. under Elevated Atmospheric pCO2 in a Grassland Ecosystem
Author(s) -
S. Zanetti,
Ueli A. Hartwig,
A. Lúscher,
Thomas Hebeisen,
Marco Frehner,
Bernt Fischer,
George R. Hendrey,
Hermann Blum,
J. Nösberger
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.2.575
Subject(s) - trifolium repens , lolium perenne , nitrogen fixation , repens , agronomy , biology , terrestrial ecosystem , carbon fixation , ecosystem , grassland , pasture , nitrogen , botany , photosynthesis , zoology , chemistry , poaceae , ecology , organic chemistry
Symbiotic N2 fixation is one of the main processes that introduces N into terrestrial ecosystems. As such, it may be crucial for the sequestration of the extra C available in a world of continuously increasing atmospheric CO2 partial pressure (pCO2). The effect of elevated pCO2 (60 Pa) on symbiotic N2 fixation (15N-isotope dilution method) was investigated using Free-Air-CO2-Enrichment technology over a period of 3 years. Trifolium repens was cultivated either alone or together with Lolium perenne (a nonfixing reference crop) in mixed swards. Two different N fertilization levels and defoliation frequencies were applied. The total N yield increased consistently and the percentage of plant N derived from symbiotic N2 fixation increased significantly in T. repens under elevated pCO2. All additionally assimilated N was derived from symbiotic N2 fixation, not from the soil. In the mixtures exposed to elevated pCO2, an increased amount of symbiotically fixed N (+7.8, 8.2, and 6.2 g m-2 a-1 in 1993, 1994, and 1995, respectively) was introduced into the system. Increased N2 fixation is a competitive advantage for T. repens in mixed swards with pasture grasses and may be a crucial factor in maintaining the C:N ratio in the ecosystem as a whole.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom