z-logo
open-access-imgOpen Access
Silencing Nicotiana attenuata Calcium-Dependent Protein Kinases, CDPK4 and CDPK5, Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations
Author(s) -
DaHai Yang,
Christian Hettenhausen,
Ian T. Baldwin,
Jianqiang Wu
Publication year - 2012
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.199018
Subject(s) - jasmonic acid , biology , manduca sexta , salicylic acid , microbiology and biotechnology , coronatine , kinase , plant defense against herbivory , protein kinase a , nicotiana , gene silencing , biochemistry , botany , arabidopsis , insect , solanaceae , gene , mutant
The plant hormone jasmonic acid (JA) plays a pivotal role in plant-insect interactions. Herbivore attack usually elicits dramatic increases in JA concentrations, which in turn activate the accumulation of metabolites that function as defenses against herbivores. Although almost all enzymes involved in the biosynthesis pathway of JA have been identified and characterized, the mechanism by which plants regulate JA biosynthesis remains unclear. Calcium-dependent protein kinases (CDPKs) are plant-specific proteins that sense changes in [Ca(2+)] to activate downstream responses. We created transgenic Nicotiana attenuata plants, in which two CDPKs, NaCDPK4 and NaCDPK5, were simultaneously silenced (IRcdpk4/5 plants). IRcdpk4/5 plants were stunted and aborted most of their flower primordia. Importantly, after wounding or simulated herbivory, IRcdpk4/5 plants accumulated exceptionally high JA levels. When NaCDPK4 and NaCDPK5 were silenced individually, neither stunted growth nor high JA levels were observed, suggesting that NaCDPK4 and NaCDPK5 have redundant roles. Attack from Manduca sexta larvae on IRcdpk4/5 plants induced high levels of defense metabolites that slowed M. sexta growth. We found that NaCDPK4 and NaCDPK5 affect plant resistance against insects in a JA- and JA-signaling-dependent manner. Furthermore, IRcdpk4/5 plants showed overactivation of salicylic-acid-induced protein kinase, a mitogen-activated protein kinase involved in various stress responses, and genetic analysis indicated that the increased salicylic-acid-induced protein kinase activity in IRcdpk4/5 plants was a consequence of the exceptionally high JA levels and was dependent on CORONATINE INSENSITIVE1. This work reveals the critical roles of CDPKs in modulating JA homeostasis and highlights the complex duet between JA and mitogen-activated protein kinase signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom