z-logo
open-access-imgOpen Access
The Mediator Complex Subunit PFT1 Interferes with COP1 and HY5 in the Regulation of Arabidopsis Light Signaling
Author(s) -
Cornelia Klose,
Claudia Büche,
Aurora Piñas Fernández,
Eberhard Schäfer,
Eva Zwick,
Thomas Kretsch
Publication year - 2012
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.112.197319
Subject(s) - biology , arabidopsis , phytochrome , phytochrome a , mutant , mediator , transcription factor , arabidopsis thaliana , microbiology and biotechnology , genetics , coactivator , transcription (linguistics) , protein subunit , gene , botany , red light , linguistics , philosophy
Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to far-red light were isolated under a light program of alternating red and far-red light pulses and were named eid (for empfindlicher im dunkelroten Licht). The dominant eid3 mutant carries a missense mutation in a conserved domain of PHYTOCHROME AND FLOWERING TIME1 (PFT1), an important component of the plant mediator coactivator complex, which links promoter-bound transcriptional regulators to RNA polymerase II complexes. Epistatic analyses were performed to obtain information about the coaction between the mutated PFT1(eid3) and positively and negatively acting components of light signaling cascades. The data presented here provide clear evidence that the mutation mainly enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB function. Our results demonstrate that the Mediator component cooperates with CONSTITUTIVE PHOTORMORPHOGENIC1 in the regulation of light responses and that the hypersensitive phenotype strictly depends on the presence of the ELONGATED HYPOCOTYL5 transcription factor, an important positive regulator of light-dependent gene expression. Expression profile analyses revealed that PFT1(eid3) alters the transcript accumulation of light-regulated genes even in darkness. Our data further indicate that PFT1 regulates the floral transition downstream of phyA. The PFT1 missense mutation seems to create a constitutively active transcription factor by mimicking an early step in light signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom