z-logo
open-access-imgOpen Access
Evidence That the Pathway of Dimethylsulfoniopropionate Biosynthesis Begins in the Cytosol and Ends in the Chloroplast
Author(s) -
Claudine Trossat,
Kurt Nolte,
Andrew D. Hanson
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.111.4.965
Subject(s) - dimethylsulfoniopropionate , chloroplast , biochemistry , cytosol , dehydrogenase , methionine , enzyme , biosynthesis , chemistry , biology , amino acid , organic chemistry , phytoplankton , nutrient , gene
In the flowering plant Wollastonia biflora (L.) DC. the first step in 3-dimethylsulfoniopropionate (DMSP) synthesis is conversion of methionine to S-methylmethionine (SMM) and the last is oxidation of 3-dimethylsulfoniopropionaldehyde (DMSP-ald) (F. James, L. Paquet, S.A. Sparace, D.A. Gage, A.D. Hanson [1995] Plant Physiol 108: 1439–1448). DMSP-ald was shown to undergo rapid, spontaneous decomposition to dimethylsulfide and acrolein. However, it was stable enough (half-life [greater than or equal to] 1 h) in tertiary amine buffers to use as a substrate for enzyme assays. A dehydrogenase catalyzing DMSP-ald oxidation was detected in extracts of W. biflora mesophyll protoplasts. This enzyme had a high affinity for DMSP-ald (Km = 1.5 [mu]M), was subject to substrate inhibition, preferred NAD to NADP, and was immunologically related to plant betaine aldehyde dehydrogenases. After fractionation of protoplast lysates, [greater than or equal to]90% of DMSP-ald dehydrogenase activity was recovered from the chloroplast stromal fraction, whereas the enzyme that mediates SMM synthesis, S-adenosylmethionine:methionine S-methyltransferase, was found exclusively in the cytosolic fraction. Immunohistochemical analysis confirmed that the S-methyltransferase was cytosolic. Intact W. biflora chloroplasts were able to metabolize supplied [35S]SMM to [35S]DMSP. These findings indicate that SMM is made in the cytosol, imported into the chloroplast, and there converted successively to DMSP-ald and DMSP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom