Iron Uptake by Symbiosomes from Soybean Root Nodules
Author(s) -
K. Marc LeVier,
David A. Day,
M. L. Guerinot
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.111.3.893
Subject(s) - ferrous , ferric , glycine , chelation , biology , biochemistry , membrane , bradyrhizobium japonicum , siderophore , rhizobiaceae , chemistry , symbiosis , bacteria , inorganic chemistry , amino acid , organic chemistry , genetics , gene
To identify possible iron sources for bacteroids in planta, soybean (Glycine max L. Merr.) symbiosomes (consisting of the bacteroid-containing peribacteroid space enclosed by the peribacteroid membrane [PBM]) and bacteroids were assayed for the ability to transport iron supplied as various ferric [Fe(III)]-chelates. Iron presented as a number of Fe(III)-chelates was transported at much higher rates across the PBM than across the bacteroid membranes, suggesting the presence of an iron storage pool in the peribacteroid space. Pulse-chase experiments confirmed the presence of such an iron storage pool. Because the PBM is derived from the plant plasma membrane, we reasoned that it may possess a ferric-chelate reductase activity similar to that present in plant plasma membrane. We detected ferric-chelate reductase activity associated with the PBM and suggest that reduction of Fe(III) to ferrous [Fe(II)] plays a role in the movement of iron into soybean symbiosomes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom