z-logo
open-access-imgOpen Access
Oxidative Stress Induces Partial Degradation of the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Isolated Chloroplasts of Barley
Author(s) -
Marcelo Desimone,
Andreas Henke,
Edgar Wagner
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.111.3.789
Subject(s) - ribulose 1,5 bisphosphate , rubisco , oxygenase , pyruvate carboxylase , chloroplast , protein subunit , oxidative phosphorylation , oxidative stress , chemistry , biochemistry , biology , photosynthesis , enzyme , gene
The effects of oxidative stress on the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were studied in isolated chloroplasts from barley (Hordeum vulgare L. cv Angora). Active oxygen (AO) was generated by varying the light intensity, the oxygen concentration, or the addition of herbicides or ADP-FeCl3-ascorbate to the medium. Oxidative treatments stimulated association of Rubisco with the insoluble fraction of chloroplasts and partial proteolysis of the large subunit (LSU). The most prominent degradation product of the LSU of Rubisco showed an apparent molecular mass of 36 kD. The data suggest that an increase in the amount of AO photogenerated by O2 reduction at photosystem I triggers Rubisco degradation. A possible relationship between AO-mediated denaturation of Rubisco and proteolysis of the LSU is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom