Identification and Preliminary Characterization of a Ca2+- Dependent High-Affinity Binding Site for Inositol-1,4,5-Trisphosphate from Chenopodium rubrum
Author(s) -
Chris H. Scanlon,
Jan Martinec,
Ivana Macháčková,
Carole E. Rolph,
P. J. Lumsden
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.110.3.867
Subject(s) - inositol , dissociation constant , binding site , inositol phosphate , receptor , chemistry , ligand (biochemistry) , biochemistry , biophysics , biology
Using a radioligand-binding assay we have identified a Ca2+- dependent high-affinity D-myo-inositol-1,4,5-trisphosphate (InsP3) binding site in a membrane vesicle preparation from Chenopodium rubrum. Millimolar concentrations of Ca2+ were required to observe specific binding of [3H]InsP3. A stable equilibrium between bound and free ligand was established within 5 min and bound [3H]InsP3 could be completely displaced by InsP3 in a time- and concentration-dependent manner. Displacement assays indicated a single class of binding sites with an estimated dissociation constant of 142 [plus or minus] 17 nM. Other inositol phosphates bound to the receptor with much lower affinity. The glycosaminoglycan heparin was an effective competitor for the binding site (inhibitor concentration for 50% displacement = 534 nM). ATP at higher, although physiologically relevant, concentrations (inhibitor concentration for 50% displacement = 241 [mu]M) also displaced [3H]InsP3 from the receptor. Recent studies in animals have highlighted the importance of Ca2+ regulation of InsP3-induced Ca2+ release. The potential for the operation of similar regulatory mechanisms in plants is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom