z-logo
open-access-imgOpen Access
ATPase Activity and Molecular Chaperone Function of the Stress70 Proteins
Author(s) -
Ján A. Miernyk,
G. Thomas Hayman
Publication year - 1996
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.110.2.419
Subject(s) - endoplasmic reticulum , chaperone (clinical) , mutant , biochemistry , biology , cytoplasm , escherichia coli , atpase , amino acid , recombinant dna , lycopersicon , microbiology and biotechnology , gene , enzyme , medicine , pathology , horticulture
The codons for the amino acid residues making up the proposed ATP-binding sites of the maize (Zea mays L.) endoplasmic reticulum and tomato (Lycopersicon esculentum) cytoplasmic Stress70 proteins were deleted from their respective cDNAs. The deletions had little effect on the predicted secondary structure characteristics of the encoded proteins. Both wild-type and mutant proteins were expressed in Escherichia coli and purified to electrophoretic homogeneity. The mutant recombinant proteins did not bind to immobilized ATP columns, had no detectable ATPase activity, and were unable to function in vitro as molecular chaperones. Additionally, the inability to bind ATP was associated with changes in the oligomerization state of the Stress70 proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom