Ozone-Induced Ethylene Emission Accelerates the Loss of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Nuclear-Encoded mRNAs in Senescing Potato Leaves
Author(s) -
R. E. Glick,
Carl D. Schlagnhaufer,
R. N. Arteca,
Eva J. Pell
Publication year - 1995
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.109.3.891
Subject(s) - ribulose 1,5 bisphosphate , rubisco , oxygenase , pyruvate carboxylase , glyceraldehyde 3 phosphate dehydrogenase , biochemistry , ethylene , messenger rna , chloroplast , dehydrogenase , ribulose , biology , photosynthesis , microbiology and biotechnology , chemistry , enzyme , gene , catalysis
The relationships among O3-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 [mu]L L-1 O3 for 5 h d-1, steady-state levels of rbcS mRNA declined at least 5-fold in expanding leaves after 3 d of O3 exposure and ethylene levels increased 6- to 10-fold. The expression of OIP-1, a 1-aminocyclopropane-1-carboxylate synthase cDNA from potato, correlated with increased production of ethylene and decreased levels of rbcS mRNA in foliage of plants treated with O3. In plants exposed to 0.30 [mu]L L-1 O3 for 4 h, rbcS transcript levels were reduced 4-fold, whereas nuclear run-on experiments revealed that rbcS transcription declined an average of 50%. The loss of rbcS mRNA may be due, in part, to posttranscriptional regulation. The levels of transcripts for other chloroplast proteins, glyceraldehyde-3-phosphate dehydrogenase, and a photosystem II chlorophyll a/b-binding protein decreased in O3-treated plants, in parallel with the decrease in rbcS mRNA. The steady-state mRNA level of a cytosolic glyceral-dehyde-3-phosphate dehydrogenase increased in O3-treated plants. The induction of ethylene and changes in transcript levels preceded visible leaf damage and decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase protein levels.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom