Auxin-Modulated Protein Disulfide-Thiol-Interchange Activity from Soybean Plasma Membranes
Author(s) -
D. James Morré,
Rafael de Cabo,
Elizabeth R. Jacobs,
Dorothy M. Morré
Publication year - 1995
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.109.2.573
Subject(s) - auxin , glutathione , biochemistry , chemistry , membrane , thiol , indole 3 acetic acid , enzyme , gene
The renaturation of scrambled (oxidized and inactive) RNase A is catalyzed by soybean (Glycine max cv Williams 82) plasma membranes. The catalysis is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid or by the natural auxin indole-3-acetic acid. The inactive auxin analog, 2,3-dichlorophenoxyacetic acid, is without effect. The activity occurs in the absence of external electron acceptors or donors and therefore appears to be a true disulfide-thiol-interchange activity between protein disulfides and thiols of RNase A and those of plasma membrane proteins. The activity is not affected by a mixture of reduced and oxidized glutathione. However, no auxin-stimulated activity was observed in the presence of either oxidized glutathione or reduced glutathione alone, a response characteristic of the previously described auxin-stimulated NADH oxidase activity of soybean plasma membranes. Taken together, the results suggest the operation in the plant plasma membrane of a protein disulfide-thiol-interchange activity that is stimulated by auxins. The auxin stimulations of the interchange activity are prevented by glutathione, reduced glutathione, and brefeldin A at concentrations that also prevent auxin stimulation of NADH oxidation by isolated plasma membranes and inhibit, as well, the auxin-stimulated elongation of excised segments of soybean hypocotyls.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom