z-logo
open-access-imgOpen Access
Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves
Author(s) -
Claus Schnarrenberger,
Anke Flechner,
William Martin
Publication year - 1995
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.108.2.609
Subject(s) - transaldolase , biochemistry , transketolase , pentose phosphate pathway , isomerase , chloroplast , enzyme , dehydrogenase , spinach , ribulose , biology , phosphogluconate dehydrogenase , triosephosphate isomerase , glucose 6 phosphate dehydrogenase , rubisco , glycolysis , gene
The intracellular localization of transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase was reexamined in spinach (Spinacia oleracea L.) leaves. We found highly predominant if not exclusive localization of these enzyme activities in chloroplasts isolated by isopyknic centrifugation in sucrose gradients. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glucose phosphate isomerase, and triose phosphate isomerase activity was present in the chloroplast fraction but showed additional activity in the cytosol (supernatant) fraction attributable to the cytosol-specific isoforms known to exist for these enzymes. Anion-exchange chromatography of proteins of crude extracts on diethylaminoethyl-Fractogel revealed only a single enzyme each for transaldolase, transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase. The data indicate that chloroplasts of spinach leaf cells possess the complete complement of enzymes of the oxidative pentose phosphate path-way (OPPP), whereas the cytosol contains only the first two reactions, contrary to the widely held view that plants generally possess a cytosolic OPPP capable of cyclic function. The chloroplast enzymes transketolase, ribose-5-phosphate isomerase, and ribulose-5-phosphate epimerase appear to be amphibolic for the Calvin cycle and OPPP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom